APPLYING THE THERMODYNAMICS OF NONEQUILIBRIUM
PROCESSES TO THE STUDY OF NONSTEADY FILTRATION
IN A CRACKED-POROUS STRATUM

R. G. Isaev UDC 536.70

Nonsteady filtration with double porosity is studied on the basis of the thermodynamics
of irreversible processes, We present the basic differential heat- and mass-transfer equa-
tions.

The production of petroleum and natural gas from cracked-porous deposit sites is presently of great
importance to the national economy. As is well known, such sites are found in the form of two porous media,
with pores of various sizes, One is a porous medium in the conventional sense of the word ("porous block™},
while the other can be classified as a porous medium in which cracks function in the role of the pore chan-
nels, with the role of the grains played by the block of rock. In this case we are thus dealing with a three-
component thermodynamic system whose first component is the solid phase, while the two other phases are
made up of the liquid saturating the space within the porous block and the crack space. Since the pressure
and temperature of the liquid within the block and within the cracks are different, transfer processes arise
between the liquid within the blocks and the liquid within the cracks (a leakage of liguid from the block to
the crack, heat transfer, etc.), which is characteristic for the phenomenon under consideration, Filtra-
tion processes in producer rocks exhibiting double porosity are, as we can see, complex macroscopic pro-
cesses involving viscous flow, diffusion, heat transfer, and the like.

In the following, based on the thermodynamics of nonequilibrium processes, we investigate the unique
features of the energy (heat) and mass transfer involved in filtration in rocks with double porosity.

A gystem of differential interrelated mass- and heat-transfer equations can be solved in certain spe-
cial cases to the very end. We will assume in the formulation of the heat problem that the producer site
{the solid component) is linearly deformable (the porosity is variable and its variation is linearly associated
with the change in pressure), while the liquid in the blocks and in the cracks is compressible. For an ab-
solutely rigid skeleton (nondeformable) we must assume that wy = 0.

The thermodynamic methods of studying filtration in a conventional porous medium are applied in [1-4],
etc. From among the cited sources we must make special reference to [2] which gives the classical theory
of thermodynamics for irreversible processes and in which solutions are given for the most important prob-
lems of nonsteady heat and mass transfer

According to [2, 5], the total system of hydrodynamic equations for multicomponent systems consists
of the equations of continuity, the equations of motion, the equations of energy and the phenomenological
equations associating the thermodynamic flows and forces, with consideration given to limitations based on
the Curie theorem.,

According to [2, 5], the equation for the conservation of matter in the case of the i~th component of
the mixture can be presented in the form

dos,

B = —div i+ (1)
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The differential equation (1) is written in a center-of-center mass system and differs from the usual
equation of continuity because of the presence of the source of the i-th component. For the liquid in the
porous blocks we obtain from (1)

0 (myp,0,)

v + div (map8,w) + divj, — I3 =0, (2)

while for the liquid saturating the crack space we have

0 (myp48,)

Y + div (myp405w) + div jy + J5 = 0. (3)

For the first deformable (solid) component we have

4 (mpy)

Py + div (mpw) 4 divj, = 0. (4

We note that in (2) and (3) we find the terms I,; and Iy, which represent the mass sources for the com-
ponents (the second and third components) as a consequence of the processes occurring within the isolated
volume (leakage from the blocks to the cracks). For this leakage equation we can take the following linear
relationship:

Iy = Iy = 0 (P, — Py), (5)

where the coefficient @ is expressed in units of h/m?,

In compiling the equations of motion for the second and third components, we should take into consid-
eration the fictitious mass forces which replace the effect of viscosity [6]. We are dealing here with the
fact that even in the simplest cases of filtration we require integration of the Navier--Stokes equations un~
der extremely complex boundary conditions, and we therefore resort to such an artificial method when we
utilize the Euler equations, with addition of the fictitious force of viscous friction [6].

The term "fictitious force" is exceedingly conditional, since from the thermodynamics viewpoint it is
a flow of vector intensity which is a function, as will be demonstrated below, of (w; — wy).

Considering the above, we derive the equations of motion:

dw R
pzez_déL = —grad P, + Iy (@, — @y) — =2 + p,Fy; (6)
t my
d
0303 513 =———gradP3_.]32(w2_w3)_£3_ + p3fy (7
t my

The second terms in the right-hand members of (7) and (6) characterize the momentum transfer resulting
from the leakage.

For the deformable solid component the equation of motion has the form

dw,

3
mpy — div (myIl) — (P, grad m, 4 P, grad my) = Z R; + piFs. (8)
e

The second term in (8) represents the divergence from the stress tensor in the elastic-deformable
solid components, while the third term is associated with the variation in the porosity of the block (m;) and
the porosity of the crack (mg). For linear elastic strains [6] we can assume that

dm, =~ BdPy;  dmy= BydP;.
In this case the body force in (8)-(6) is the force of gravity.

The equation for the balance of the total energy for the components of the thermodynamic system can
be presented in the following form:

for the first (solid) component

—g— [ m,p, (;—w? + ¥+ ”‘” + div [ o, (% w? + W+ u1> w,] — div (my[Tw)) + div j{» —84;—q, =0; (9)
t
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for the second component (it is analogous for the third component):
9 1 ' . 1
o [mzpzez( 5 w4+ ¥, + uz)] + div {mzpzez (_2“ Wi+ Wy + Uy ) wz]

+ div (mpPywy) + div (my8,Waf) + div j@ + 84, + gy + Gpg = 0. (10

The third terms in (9) and (10) représent the components of the total-energy flux governed by the me-
chanical work performed on the components of the system; the fourth term in (9) and the fifth term in (10)
represent the transfer of heat resulting from the temperature difference and from diffusion.

The quantities dij characterize the intensity of the flow of heat between the components of the system
if their temperatures are not identical, Finally, the fourth term in (10) is the component of the total-energy
flux due to the transfer of potential energy in the case of diffusion in the gravity field.

We note that in (9) and (10) the quantity 6A; denotes the work of the forces on the inside surfaces of
separation between the liguid and the solid components in units of time 4, = 64, + 6A;), with this work
vanishing if the surface of separation is nonmoving (the nondeformable solid component),

Proceeding from the entropy balance equation [2]

Jps
ot

= —divj,, +7, 11)
(

and the Hibbs equation [2], we have the following balance equation for the first component:

I — iy q 1 1. 1T,
—————7T——— + —ﬁ——— T, n..qw— T .]lgli-gradTi—E []1' ( T, grad —;2—‘ —F )}‘(12)

1

a .
3 (mypysg) = —div ( myp,85,w +

For the second component (and analogously for the third component):

9 : @ — i
a3 (M30,8,5) = — div (mzpzezs2 w4+ __7.,2_21
l : ! ” g R, {w, —w,)
—_— Pypyw — —5+j Z)gradT—-—-—[] (T grad——%_F> S | T NS & ot St VA 13
T, g P T, ’ T, T, (19

For the entire thermodynamic system, on the basis of (12) and (13) we have

3 R HO . 3 3
0 ]q Wil 1 i 1 i ,
- m;p8;s; | = —div 11;0,8;5;w + )— - jO.grad T; — ti ol T erad B F-)
5 (; 0i0; ) ( El ¢ T, ; T2 18 i E T li i g T i

=1 ¢

3

; R; (w; —wy) G q> B I 1

SN R@=w) e 66 Ly oo, NV Lo 14
2 R AR R R ET. Ve 9

i=2

In the notation of (14) the first term in the right-hand member represents the entropy flux, while the
remaining terms correspond to the intensity of the entropy source, We note that the intensity of the entropy
source is determined by the heat conduction, diffusion, and viscosity phenomena and is presented in bilinear
form, with one of the factors in each term a quantity of the flow type, while the other factor corresponds fo
the thermodynamic force,

To close the system of balance equations and the entropy balance, we should coordinate the thermo-
dynamic flows and forces, bearing in mind in this case the Curie principle with respect to the identity of
tensor dimensionalities for flows and forces.

For the sake of simplicity we will subsequently assume that T; = Ty = T3 = T; then (14) assumes the
following form:

; 1 . Py
at (E mpﬁs)___dw(gm,pes w*“T_' _-T—pi]i) ]q gradT——-——E}i (Tgrad mf‘)

i=1 i=1

— — )
+ Rz(sz ) + R3(wﬁr @y ——T(H—}—Pz[-{—Pgl)..vw. (15)

Here I is the unit tensor.

If we write out all of the phenomenological equations, the following relationships will exist between
the phenomenological coefficients of these equations, in accordance with the Onsager theorem:

Lyy=1Ly: Ly=Ly; Ly= Ly, ...
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The phenomenological equations will be constructed in the manner of the following (for heat flow):

gradT L, (grad py) 7 L (grad po)r Ly (grad pg)r + Ly Wy — Wy Ly Wy W (16)

L
Iq 11 T2 1 T 13 T T T T

We note that if the forces are conservative, we must take into consideration
F;= —grad ¥,.

The equation for the diffusion flow of the first component is given by

grad T —L ) (grad l‘l‘i)T _L23 (grad ”2)7' . ng (grad !"’3)T + L25 B Wy — Wy + Lz6 . ;w:; — Wy

L
I R 2 T T T T T

(17
There is no difficulty in deriving the equations for the diffusion flows j, and j;. For R, (analogously
for Ry) we have
RZ — __L51 grad T - L52 (grad p’i)T —L (grad y'z)T —L (grad M3)T + L55 Wy — Wy Wy — Wy

T2 T 53 T 54 T T + Ly T (18)

while for the tensor

We see from (16) that the energy (heat) transfer proceeds both by conduction and as a result of dif-
fusion (the Dufaud effect) and as a result of the action of the "fictitious" forces, as per Zhukovskii, It fol-
lows from (17) that the flow of mass of the component is governed not only by the diffusion effect, but also
by the conduction of heat (the Soret effects), as well as by the "fictitious" forces.

What remains now is the substitution into (2)-(4), (6)~(8), and (9) and (10) the values of the thermo-
dynamic flows and to derive a closed system of differential equations for the thermodynamic system.

To these equations we have to add the equations of state for the component, as well as the equation
for the transfer,

We note that if in the approximate practical calculatiohs we neglect the terms Ly; (i = j) and the dif-
fusion of pressure, Egs, (16)-(18) yield

jg=—hgradT; R, = mgz:vz (w, — w,);
i1= —pDvoue Ry= mgzzv3 (@ — wy); (19
2 =~ PaDiVPui My = —t(vey.
i3 = —PsD3VPsps
On the basis of (19) Eqs. (2)-(4) assume the form
- (maps) + iV (map ) — ¥ (p:DeVow) — Iy = 0
"b%‘ (mapgea) + div (myp385w) — v (0sD3Vp3) + Isp = 0; (20)
0 .
—5 (mapy) +div (myp,@) — V (p1D1Vpy9) = 0-
The equations of motion (6)-(8) assume the form
oy 2% grad P, + L@, — wg) — —’"LZAYL (@, — @y) + p,Fs
2
(analogously for the third component),
Py dw, _ div (mJ1) — (P,-grad m, -+ P,-grad my) = mgzzvz (wy, —wy) + m‘g::va (w3 — wy) + p,Fy. (2D
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The equation for the balance for total energy, which follows easily from (9) and (10}, has the form

g

» . 1
o ’rmip1 (é— w? - uy + ‘I’i)] -+ div [mipi (é- w? -+ uy A IP,) W, I —div (mJJJw,) — MAT — 84, = 0;

—:t- [m2p292 (% wl + u, -+ 11’2)] + div [mz\ozez (% wk -+ iy + ‘P2> wz] + div (myPyw,) + div (1,8, ¥ojp) — AT + 84, = 0.

The equations for the balance of the intrinsic energy for the components of the system are very easily
derivable from (22) and from the equation for the balance of kinetic and potential energy density.

The resulting relationships should be expanded with the equations of state:
ty = fy(Py, T); Py =Fy(py T);
uy=fo(P3, T); P3=F3(ps T);

3
with the equation 2 pip = 1 and with the formula for the transfer of matter.
i=1

As regards the dissipation work, this is easily calculated from the expressions for the energy, de-
rived through averaging over the volume, i.e.,

84, = Ryw, + P, 0(my0) .
ot
8y = Ry, + P, L% (’2;93) .

For the nondeformable solid component each of these expressions vanishes,

We have thus derived a closed system of differential interrelated equations for the transfer of mass
and energy in the case of a process of nonsteady filtration in crack-porous layers,

NOTATION

Py = mjeipi/p is the mass concentration of the component (0; = 1) (i =1, 2, 3);
m, and my are the porosities of the blocks and of the crack;
my = 1 my — Mlg;
B9, O3 are the saturation of the porous block and of the crack space with liquid;
oi (i =31, 2,3) is the density of the component;
p o= 2Pk

f==
Ji =mypi 8;(w; — w) denotes the vector for the diffusion flow of the component i {i = 1, 2, 3);
Wy is the velocity vector for the i-th component;

3 3
W= > mipi"iwi/z mjp; 6y 18 the velocity vector for the center of masgs of the system;
i=1 i=1

Ips is the source for the mass of the second component;

I3 is the source for the mass of the third component;

t is the time;

P, and Py denote the pressures of the Iiquid contained within the porous block and in the crack;
Fii=1,2,3) is the body-force vector;

Rii=1,2,3) is the Zhukovskii "fictitious" force vector;

I is the stress tensor in the solid component of the system;

v:i=1,2,3) is the specific potential energy of the component;

j(ll(i =1,2,3) is the heat-flux vector;

6Ai(i=1,2,3) is the work per unit time of the forces at the internal boundaries of separation between

the liquid and solid components;
5A1:6A2 +5A3;

qi i=1,2,3) is the intensity of the transfer of heat as a consequence of nonidentical component tem~
peratures;

is,a is the entropy flux vector;

s is the specific entropy;
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Ig
Ti(=1,2,3)
Hi(i=1,2,3)
Lij

A

ko and kg

v, and Vg
Dii=1,2,3)
uii=1,2,3)
v

A

1.

2.

is the intengity of the entropy source;

is the component temperature;

is the specific Hibbs function of the i-th component;

denote the phenomenological coefficients;

is the coefficient of thermal conductivity;

denote the permeability of the blocks and cracks respectively;
denote, respectively, the kinematic viscosity of the liquid in the blocks and in the cracks;
are the diffusion coefficients;

is the specific intringic energy of the component;

is the Hamiltonian;

is the Laplace operator.
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